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Abstract. Comprehensive Monte Carlo simulations of the short-time dynamic behaviour are
reported for the three-dimensional Ising model at criticality. Besides the exponentθ of the critical
initial increase and the dynamic exponentz, the static critical exponentsν andβ as well as the
critical temperature are determined from the power-law scaling behaviour of observables at the
beginning of the time evolution. States of very high temperature as well as of zero temperature are
used as initial states for the simulations.

1. Introduction

Critical properties of many magnetic materials can be described by a simple Ising model,

H = K
∑
〈i,j〉

SiSj (1)

whereSi = ±1 represents the spin of sitei, and the sum extends over nearest neigbours only.
The factor 1/kBT is included in the coupling constantK. The Ising model has been solved
exactly in one and two dimensions. However, for higher dimensions, there exist extensive
perturbative analyses based on renormalization group methods and numerical investigations
with Monte Carlo methods.

It was traditionally believed that universal scaling behaviour exists only in or near
thermodynamic equilibrium. Recently, it has been argued theoretically [1] that some dynamic
systems already exhibit universal scaling behaviour in the macroscopic short-time region
of their dynamic evolution. The main point is that universality and scaling emerge after a
microscopic timescaletmic, which is sufficiently large in the microscopic sense but still short
in the macroscopic sense. This statement has been proven valid in a series of numerical
simulations of various statistical systems. More interestingly, as well as the new critical
exponentθ , describing the critical initial increase of the magnetization, and the dynamic critical
exponentz, short-time critical dynamics provides a measure of the static critical exponents and
of the critical temperature. This dynamic approach is free of critical slowing down since the
spatial correlation length is still small within the short-time regime, even at or near the critical
point§.

Up to now, systematic numerical simulations of the short-time critical dynamics have been
carried out mainly in two-dimensional systems [2]. For the three-dimensional Ising model, the
power-law decay of the magnetization starting from an ordered state has been simulated [3,4],

§ For a recent review see [2].
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the new exponentθ and the dynamic exponentz have also been obtained [5–7]. However, a
complete understanding of the short-time dynamic behaviour of the three-dimensional Ising
model is still necessary, since it is a very important model. Especially, a systematic test of the
short-time dynamic approach to the determination of all the critical exponents and the critical
temperature in a three-dimensional system is important.

In this paper we report a comprehensive investigation of the short-time critical dynamics of
the three-dimensional Ising model. A power-law behaviour of the autocorrelation, the second
moment and the Binder cumulant is observed, in addition to that of the magnetization. The
results fully support the short-time dynamic scaling. For the first time we extract the critical
temperature and the static exponentsν andβ from the short-time scaling behaviour. Our
results for the static exponents and critical temperature agree well with those obtained in the
extensive studies at thermodynamic equilibrium.

In the next section, a scaling analysis of the short-time critical dynamics is given.
Numerical results are presented in section 3. The last section contains the summary and
discussion.

2. Scaling relations

Using renormalization group methods, Janssenet al [1] have shown that far from equilibrium,
in a macroscopic short-time regime of the dynamical evolution, there already emerges universal
scaling behaviour in the O(N) vector model. The relaxation process considered is one of a
system initially in a high-temperature state, suddenly quenched to the critical temperature
Tc and evolving with dynamics of model A. For an initial state with a non-zero but small
magnetization(m0 � 1), a generalized dynamic scaling form has been derived with anε-
expansion for the O(N) vector model,

M(k)(t, τ, L,m0) = b−kβ/νM(k)(b−zt, b1/ντ, b−1L, bx0m0). (2)

In equation (2),M(k) is thekth moment of the magnetization,

M(k)(t) = 1

L3

〈(∑
i

Si(t)

)k〉
(3)

t is the time of the dynamical relaxation,L is the lattice size,

τ = T − Tc
Tc

(4)

is the reduced temperature, andb is a spatial rescaling factor. The quantityx0 is a new
independent critical exponent, the scaling dimension of the initial magnetizationm0. The
interesting and important point is that the critical exponentsβ, ν andz in equation (2) are
exactly those usually defined in equilibrium. These exponents can thus be extracted from the
short-time critical dynamics.

Equation (2) provides the time evolution of the magnetization, withk = 1. Takingb = t1/z
for the spatial scaling factor gives

M(t, τ,m0) = t−β/νzM(1, t1/νzτ, tx0/zm0) ∼ m0 t
(x0−β/ν)/zF (t1/νzτ ) +O([tx0/zm0]2). (5)

The expansion has been performed with respect to the small quantitytx0/zm0 andM(t,m0 =
0) = 0 has been used. It has been implicitly assumed thatL is sufficiently large. Exactly at
the critical point(τ = 0), equation (5) predicts a power-law behaviour of the magnetization
in the short-time region,

M(t) ∼ t θ θ =
(
x0 − β

ν

)
1

z
. (6)
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Up to now, analytical calculations for the O(N) vector model and numerical simulations for
a variety of statistical systems show thatθ > 0, i.e. the magnetization undergoes an initial
increase. This is a very prominent phenomenon in the short-time critical dynamics.

Now we consider the casem0 = 0. Using equation (2) for the second moment of the
magnetization at the critical temperature gives

M(2)(t) ∼ t−2β/νzM(2)(1, t−1/zL). (7)

In the beginning of the time evolution the spatial correlation length is still small, even at the
critical point. Thus it can be deduced thatM(2)(t, L) ∼ L−d , whered is the dimension of the
system. Taking this into account, equation (7) yields a power-law behaviour

M(2)(t) ∼ t c2 c2 =
(
d − 2

β

ν

)
1

z
. (8)

An analysis of the autocorrelation (form0 = 0)

A(t) = 1

N

〈∑
i

Si(t)Si(0)

〉
(9)

shows that it obeys a power law [8]

A(t) ∼ t−ca ca = d

z
− θ. (10)

In summary, simulations of the dynamic system starting from small or zero initial
magnetization, at or near the critical point, allow the quantitiesθ , c2 andca to be measured
and thus a determination of the critical exponentsθ , β/ν andz separately. In principle, the
critical temperature itself can also be determined from the location of the optimal power-law
behaviour of the magnetization within the critical region [2, 9]. However, a similar but more
accurate determination of the critical temperature will be presented below. This is also the
case for the determination of the exponentν from the derivative ofM with respect toτ .

In the above considerations the dynamic relaxation process was assumed to start from a
disordered state with vanishing or small magnetizationm0. Another interesting and important
process is the dynamic relaxation from a completely ordered state. The initial magnetization
being exactly at its fixed pointm0 = 1, a scaling form

M(k)(t, τ, L) = b−kβ/νM(k)(b−zt, b1/ντ, b−1L) (11)

is expected. This scaling form looks the same as the dynamic scaling form in the long-time
regime, however, it is now assumed already valid in the macroscopic short-time regime.

For the magnetization itself,b = t1/z yields

M(t, τ ) = t−β/νzM(1, t1/νzτ ). (12)

This leads to the power-law behaviour

M(t) ∼ t−c1 c1 = β

νz
(13)

at the critical point (τ = 0). For small but nonzeroτ , the power-law behaviour of the
magnetization will be modified by the scaling functionM(1, t1/νzτ ), thus allowing for a
determination of the critical temperature [2]. Taking the derivative with respect toτ on
both sides of equation (12) and fixingb = t1/z again, gives the logarithmic derivative of
the magnetization

∂τ lnM(t, τ )|τ=0 ∼ t−c`1 c`1 = 1

νz
. (14)
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Here, unlike the relaxation from a disordered state, the average magnetization is not zero.
A Binder cumulantU(t) can be obtained using the magnetization and its second moment.
Finite-size scaling shows that

U(t) = M(2)

(M)2
− 1∼ t cU cU = d

z
. (15)

Thus, the short-time behaviour of the dynamic relaxation starting from a completely
ordered state is also sufficient to determine all the critical exponentsβ, ν andz as well as the
critical temperature. In practical simulations, these measurements of the critical exponents and
critical temperature are usually better in quality than those from a relaxation process starting
from a disordered state.

3. Numerical results

We have performed simulations on three-dimensional lattices of linear sizesL = 32, 64 and 128
(in a particular caseL = 256), starting either from an ordered state or from a high-temperature
state with zero or small initial magnetization. In the latter cases the inital magnetization has
been prepared by flipping in an ordered state a definite number of spins at randomly chosen
sites in order to get the desired small value ofm0. Starting from the initial state, the system has
been updated by a heat bath Monte Carlo algorithm. A unit in time is defined as a complete
update of all the spins in the lattice. Simulations have been performed, depending on the inital
magnetization, up tot = 1000. The preparation of the inital magnetization and the update
up to the maximal time has been repeated 1000 or 5000 times, depending on the lattice size
(much less forL = 256), and the magnetization, the second moment of the magnetization (3)
or the autocorrelation (9) has been measured. In general, several runs of this kind have been
performed to estimate the statistical error. The simulations used the valueKc = 0.221 66 for
the critical point, taken from [10]. Simulations have also been carried out in the neighbourhood
of Kc to extract the critical point and the critical exponentν.

3.1. Evolution from a disordered state

Magnetization. At the beginning of the time evolution, for sufficiently smalltx0/zm0, the
magnetization undergoes a power-law initial increase. Form0 andt not too small, the power-
law behaviour will be modified. This may be called the ‘finitem0 effect’. The possibility of a
finite-size effect also has to be evaluated. Furthermore, scaling form (2) is strictly valid only
in the limit m0 = 0. However, practical measurements can only be carried out for finitem0

and the measured exponentθ may show a weak dependence onm0. The data must thus be
extrapolated form0 = 0.

We have measured the magnetizationM(t) for m0 = 0.02, 0.04 and 0.06 for the largest
lattice,L = 128. Form0 = 0.02 we have performed four runs, in the other cases three runs
up tot = 300. Figure 1 shows on a log–log scale a pronounced power-law behaviour starting
at the onset of the time evolution. A finitem0 effect is observed at the larger times.

In order to determine more clearly the region where the power law is strictly fulfilled, we
divided the timescale into non-overlapping intervals1q(t) = [t, qt ], with q < 2, and measured
the exponentθ(t) separately in each interval. Since the intervals contain more points at later
times where the fluctuations are larger, the errors in each interval are comparable. Already
from the second bin the slope shows a stable behaviour. Form0 = 0.02 slope is quite stable
up tot = 100. Thereforeθ was calculated from a least-squares fit in the time interval [2, 100].

Similarly, we chose the interval [2, 50] for m0 = 0.04. Form0 = 0.06 the restrictive
interval [2, 15] was used. Table 1 presents the results. From these results, an extrapolation to
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Figure 1. Time evolution of the magnetizationM(t) for three values of the initial magnetization
m0 for L = 128.

Table 1. The exponentθ measured forL = 128 for different values of the initial magnetization
m0. The valueθ(m0 = 0) is the result of an extrapolation (see text).

m0 0 0.02 0.04 0.06

θ 0.108(2) 0.1059(20) 0.1035(4) 0.1014(5)

m0 = 0 yieldsθ = 0.108(2). Careful analysis of the data forL = 64 shows that the finite-size
effect inL = 128 is already negligible.

Autocorrelation. Measurements of the autocorrelation function suffer from large fluctuations
in the region of larget , since it decays by nearly three orders of magnitude betweent = 0
andt = 100. Figure 2(a) shows results for four runs forL = 128 on a log–log scale. For the
lattice sizeL = 64 three runs were performed.

As described above, we have divided the timescale into non-overlapping intervals11.5(t)

and calculatedca(t) in each interval. This is exemplified forL = 128 in figure 2(b). On this
plot ca(t) is rather constant after the first few bins, while large fluctuations start att > 70.
Thus, the intervalt = [10, 70] is used forL = 128 and 64 in order to obtainca. The results
are given in table 2. With no apparent dependence on lattice size, the two results were simply
averaged to estimateca for L = ∞ (second column).

Second moment of the magnetization.The second moment of the magnetization has been
simulated forL = 128 in three runs up tot = 512, and forL = 64 in three runs each up to
t = 100. Figure 3 showsM(2)(t) for L = 128 on a log–log scale.

This curve as well as the slopes in bins show slightly larger fluctuations at highert , but
no departure from a power law. Therefore, the full intervalst = [2, 512] forL = 128 and
t = [2, 100] forL = 64 were used to compute the values ofc2 reported in table 2. ForL = ∞,
the estimatec2 = 0.970(11) provided is obtained by averaging the results forL = 64 and
L = 128, since no dependence on the lattice size can be seen.
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Figure 2. (a) AutocorrelationA(t) and (b) the slopeca(t) of the autocorrelation function for
L = 128, in the intervals11.5(t) = [t, 1.5t ].

Table 2. Exponentsca of the autocorrelation function andc2 of the second moment of the
magnetization for different lattice sizes obtained from a disordered initial state form0 = 0 (upper
part). Exponentsc1 of the power-law decrease of the magnetization andcU for the cumulant, as
well as inverse temperatureKc and exponentc`1 for the logarithmic derivative of the magnetization
measured from an ordered initial state (lower part). Forc1, the additional resultc1 = 0.2534(4)
obtained from two runs withL = 256 has been included (see text).

L = ∞ L = 128 L = 64

ca 1.362(19) 1.358(19) 1.366(20)
c2 0.970(11) 0.966(16) 0.975(3)
c1 0.2533(5) 0.2539(1) 0.2527(8)
cU 1.462(12) 1.453(17) 1.471(4)
Kc 0.221 70(4) 0.221 70(4) —
c`1 0.774(1) 0.774(1) —

3.2. Evolution from an ordered state

For the determination of the critical exponents and critical temperature, the dynamic relaxation
process starting from an ordered state has been proven advantageous over that from a high-
temperature initial state. Indeed, the magnetization only decreases slowly in time fromm0 = 1.
Furthermore, the magnitude of the magnetization in the short-time regime is large, therefore
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Figure 3. Time evolution of the second moment of the magnetization,M(2)(t), for L = 128.

Figure 4. Time evolution of the magnetizationM(t) for m0 = 1 for L = 256, 128, 64 and 32.
The points are obtained from the best fit to (16).

statistical fluctuations are less prominent. We have measured the magnetizationM(t) and the
second momentM(2)(t) for lattice sizes 32, 64 and 128, and, with less statistics, forL = 256.
Measurements have been performed up tot = 512 forL = 128, and up tot = 1000 for the
magnetization only. For the large lattice sizeL = 256 an average over only 20 samples has
been performed whereas forL = 128 and 64, over 1000 samples were taken for each run, and
two to four runs performed in order to estimate the statistical error. ForL = 32, 5000 samples
were collected.

Magnetization. Figure 4 shows the evolution of the magnetization for all four lattice sizes
on a log–log scale. It is interesting that forL = 256 down toL = 64 the measurements
completely overlap up tot = 1000. From equation (13), the slope of the curves provides
a measure ofβ/νz. However, careful analysis reveals that the slope decreases weakly with
increasing time. This suggests that a correction to scaling should be considered in order to
obtain accurate results. In comparison to the two-dimensional Ising model, the correction to
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Figure 5. Time evolution of the Binder cumulantU(t) for m0 = 1 and lattice sizesL = 128, 64
and 32.

scaling seems somewhat larger in three dimensions [2]. We have found that the best correction
to scaling is given by theansatz

M(t) = at−c1e−γ t
−δ
. (16)

Least-squares fits were performed in the intervalt = [1, 1000] forL = 64, 128 and 256. The
resulting fit parameters, averaged over the three lattice sizes and over the two runs for each
lattice size, are ln(a) = 0.0033(10), c1 = 0.2533(7), γ = 0.1874(19), andδ = 0.479(39).
Table 2 reports the values forc1. Calculated values forM(t) using (16) are also provided on
figure 4 (points) and show good agreement. Without the correction to scaling, the measured
exponentc1 would be 1–2% smaller.

Binder cumulant. The second moment of the magnetization has been measured up tot = 512
for L = 128, and up tot = 1000 forL = 64 and 32. A plot of the Binder cumulantU(t),
defined in equation (15), is shown on log–log scale in figure 5. The curves show that for
L = 32 the power-law behaviour prevails only up tot ∼ 100, while for the larger lattices it
remains up to the maximal time.

An analysis of the slope measured in the intervals11.5(t) shows that the exponentcU (t)
can be obtained in the intervalt = 30 up to the maximal time forL = 64 and 128. ForL = 32
there is a plateau only overt = [10, 100]. Hence the results for this lattice size are not reported.
The slopecU is calculated in the intervalst = [30, 1000] forL = 64 andt = [30, 512] for
L = 128 and given in table 2. Within errors they are consistent and their average is reported
for L = ∞ in table 2. The error estimates are only based on statistics over a limited number
of runs and exclude possible systematic contributions.

Critical temperature andc`1. Figure 6 shows the magnetizationM(t) for m0 = 1 for three
values for the inverse temperatureK1 = 0.220 66,K = 0.221 66 andK2 = 0.222 66,
on a log–log scale. The critical pointKc can be estimated by searching for the best
power-law behaviour withK betweenK1 andK2. Namely, the best straight-line fit to
curves obtained by quadratic interpolation forK1 < K < K2 is sought. Restricting
the interval tot = [30, 512], the resultKc = 0.221 70(4) is obtained. The quadratic
interpolation also provides the logarithmic derivative of the magnetization with respect to
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Figure 6. Time evolution of the magnetizationM(t) for m0 = 1 for three values of the inverse
temperatureK1 = 0.220 66,K = 0.221 66 andK2 = 0.222 66.

Figure 7. Logarithmic derivative of the magnetization with respect toτ , obtained from a quadratic
interpolation between the three curves shown in figure 6 taken atK = 0.221 66.

τ in equation (14). This is shown in figure 7. The slope over the interval [30, 300]
providesc`1 = 0.774(1). The errors are based on the statistics of comparing only two data
sets. A correction to scaling has not been considered. This could result in slightly larger
errors.

3.3. Critical exponents

We now proceed to determine the critical exponents. Using the relaxation from a high-
temperature state, we have measured the exponentθ directly from the critical initial increase
in magnetization (6), and the exponentsc2 andca from the power-law behaviour of the second
moment (8) and the autocorrelation (10). Similarly, from measurements of the power-law
behaviour with anorderedinitial state we have obtainedc1, c`1 andcU from the magnetization
(13), its logarithmic derivative (14) and the Binder cumulant (15). At this point, it is useful to
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Table 3. Determination ofz from three independent measurements ofd/z.

d/z z

ca + θ 1.470(13) 2.041(18)
cU 1.462(12) 2.052(17)
c2 + 2c1 1.4766(8) 2.032(11)

Table 4. Final results for all critical exponents and the critical pointKc (left). Results from earlier
investigations discussed in the text have been collected in the right column.

θ = 0.108(2) 0.104(3) [6]

z = 2.042(6) 2.04(3) [12], 2.032(4) [6]
2.04(1) [7], 2.05(2) [3]
2.04(2) [4]

β/ν = 0.517(2) 0.518(7) [10], 0.5185(16) [16]
ν = 0.6327(20) 0.6289(8) [10], 0.6250(25) [11]

0.6301(8) [16]
β = 0.3273(17) 0.3258(44) [10], 0.3267(10) [16]

0.3269(6) [17]
Kc = 0.221 70(4) 0.221 6595(26) [10]

0.221 6546(10) [16]
0.221 6544(3) [17]

recall the scaling relations:

c2 = d

z
− 2

β

νz
c1 = β

νz

ca = d

z
− θ cU = d

z

c`1 = 1

νz
.

Our measurements of the exponentc1 are very accurate, while actual errors onKc andc`1
could be somewhat larger than those given in table 2. The value obtained forc1 agrees well
with previous measurements [3,4], although the approaches to correct for scaling differ. Our
procedure is essentially similar to that used in [11]. The dynamic exponentz can be estimated
independently fromcU . Since the Binder cumulant (15) is constructed from the magnetization
and its second moment, the estimates are usually better than for a Binder cumulant constructed
from the second and the fourth moments, typically used in the relaxation from a disordered
state or in equilibrium. The exponentz can also be extracted fromca + θ andc2 + 2c1. Table 3
lists the results. These concur within statistical errors. Table 4 reports the average of the three
values. Withz, and fromc1 andc`1, the exponentsβ/ν andν can be estimated. Results for all
critical exponents and the critical pointKc are given in table 4.

Our final result for the exponentθ given in table 1,θ = 0.108(2) is consistent with
an early estimate using a small lattice [5] but slightly larger thanθ = 0.104(3) obtained
from damage spreading [6]. It is not clear whether this difference comes from statistical
or systematic errors. From equilibrium dynamics, the dynamic exponentz = 2.04(3) has
been extracted [12]. Values ofz = 2.032(4) [6] and z = 2.04(1) [7] have been obtained
recently from damage spreading and ofz = 2.05(2) [3] andz = 2.04(2) [4] from large-scale
simulations of critical relaxation, starting from an ordered state. Our valuez = 2.042(6)
is consistent with all of them. For the ratioβ/ν andν, recent analytic calculations on the
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base of a renormalization-group expansion (in equilibrium) yieldβ = 0.327,β/ν = 0.518
and ν = 0.631 [13–15], while numerical investigations in equilibrium by Ferrenberg and
Landau [10] yieldβ = 0.3258(44), β/ν = 0.518(7) and ν = 0.6289(8). [10] provides
a good review of earlier numerical values. Investigations using the cluster algorithm have
yielded ν = 0.6301(8) andβ = 0.3267(10) [16] andβ = 0.3269(6) [17]. In [11], the
valueν = 0.6250(25) has been extracted from measuring the interface energy. Our value of
β/ν = 0.517(2) is accurate but the value ofν is slightly larger. Our estimate ofKc is consistent
with Kc = 0.221 6595(26) in [10], Kc = 0.221 6546(10) [16], orKc = 0.221 6544(3) [17].
Similar results have been quoted in [18–20].

4. Summary and discussion

In the previous sections we have reported comprehensive Monte Carlo simulations of the short-
time critical dynamics for the three-dimensional Ising model. Starting from a high-temperature
initial state, the magnetization, its second moment and the autocorrelation have been measured
at the critical point. Similarly, we have studied the behaviour of the magnetization, its derivative
with respect to the temperature and the Binder cumulant for a completely ordered initial state.
Theoretically one expects a power law for all these observables within the short-time regime
at the critical point. This is indeed observed in our numerical simulations. All the dynamic
exponents and static exponents as well as the critical temperature have been determined. The
results are consistent and strongly support a full dynamic scaling in the short-time regime of the
dynamic evolution. The values of the dynamic exponentz and the static exponentsβ/ν andν
are independent of initial conditions and agree well with those measured in equilibrium. Unlike
non-local cluster algorithms, the short-time dynamic approach studies the dynamic properties
of the original local dynamics. Our measurements of the static exponents are comparable with
large-scale simulations in equilibrium. All this indicates that the dynamic measurements of
the critical exponents are promising. This work could possibly be extended to the diluted or
the random field Ising models.

Note added in proof. Recently, the resultsν = 0.6298(5) [21] andβ/ν = 0.518(1) [22] have been reported.
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