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Abstract. Comprehensive Monte Carlo simulations of the short-time dynamic behaviour are
reported for the three-dimensional Ising model at criticality. Besides the exp@wétite critical

initial increase and the dynamic exponenthe static critical exponentsand 8 as well as the
critical temperature are determined from the power-law scaling behaviour of observables at the
beginning of the time evolution. States of very high temperature as well as of zero temperature are
used as initial states for the simulations.

1. Introduction

Critical properties of many magnetic materials can be described by a simple Ising model,
H=KY_SS; @
(i)

whereS; = £1 represents the spin of siteand the sum extends over nearest neigbours only.
The factor YkpT is included in the coupling constait. The Ising model has been solved
exactly in one and two dimensions. However, for higher dimensions, there exist extensive
perturbative analyses based on renormalization group methods and numerical investigations
with Monte Carlo methods.

It was traditionally believed that universal scaling behaviour exists only in or near
thermodynamic equilibrium. Recently, it has been argued theoretically [1] that some dynamic
systems already exhibit universal scaling behaviour in the macroscopic short-time region
of their dynamic evolution. The main point is that universality and scaling emerge after a
microscopic timescalgyic, which is sufficiently large in the microscopic sense but still short
in the macroscopic sense. This statement has been proven valid in a series of numerical
simulations of various statistical systems. More interestingly, as well as the new critical
exponend, describing the critical initial increase of the magnetization, and the dynamic critical
exponent, short-time critical dynamics provides a measure of the static critical exponents and
of the critical temperature. This dynamic approach is free of critical slowing down since the
spatial correlation length is still small within the short-time regime, even at or near the critical
points.

Up to now, systematic numerical simulations of the short-time critical dynamics have been
carried out mainly in two-dimensional systems [2]. For the three-dimensional Ising model, the
power-law decay of the magnetization starting from an ordered state has been simulated [3, 4],

§ For a recent review see [2].
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the new exponert and the dynamic exponenthave also been obtained [5-7]. However, a
complete understanding of the short-time dynamic behaviour of the three-dimensional Ising
model is still necessary, since it is a very important model. Especially, a systematic test of the
short-time dynamic approach to the determination of all the critical exponents and the critical
temperature in a three-dimensional system is important.

Inthis paper we report a comprehensive investigation of the short-time critical dynamics of
the three-dimensional Ising model. A power-law behaviour of the autocorrelation, the second
moment and the Binder cumulant is observed, in addition to that of the magnetization. The
results fully support the short-time dynamic scaling. For the first time we extract the critical
temperature and the static exponentand g from the short-time scaling behaviour. Our
results for the static exponents and critical temperature agree well with those obtained in the
extensive studies at thermodynamic equilibrium.

In the next section, a scaling analysis of the short-time critical dynamics is given.
Numerical results are presented in section 3. The last section contains the summary and
discussion.

2. Scaling relations

Using renormalization group methods, Jansstead [1] have shown that far from equilibrium,

in amacroscopic short-time regime of the dynamical evolution, there already emerges universal
scaling behaviour in the @V) vector model. The relaxation process considered is one of a
system initially in a high-temperature state, suddenly quenched to the critical temperature
T, and evolving with dynamics of model A. For an initial state with a non-zero but small
magnetizationimy < 1), a generalized dynamic scaling form has been derived with-an
expansion for the QV) vector model,

MPB ¢, 1, L,mg) = b~ M® B3, b, b7IL, b*mo). 2)
In equation (2)M® is thekth moment of the magnetization,

k
MO ) = %<<ZS,-(I)> > ©)]

t is the time of the dynamical relaxation,is the lattice size,
_ T = T, @)
c

is the reduced temperature, ahds a spatial rescaling factor. The quantity is a new
independent critical exponent, the scaling dimension of the initial magnetizatonThe
interesting and important point is that the critical exponghts andz in equation (2) are
exactly those usually defined in equilibrium. These exponents can thus be extracted from the
short-time critical dynamics.

Equation (2) provides the time evolution of the magnetization, ivith1. Takingb = +%/*
for the spatial scaling factor gives

M(t, t,mo) =t PVIM L, Y71, £ mg) ~ mot T BMEE Yy + O£ mgl?).  (5)
The expansion has been performed with respect to the small quefityg andM (¢, mg =
0) = 0 has been used. It has been implicitly assumedZhatsufficiently large. Exactly at

the critical point(z = 0), equation (5) predicts a power-law behaviour of the magnetization
in the short-time region,

M) ~t° 0 = (xo - —) - (6)

T
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Up to now, analytical calculations for the(®) vector model and numerical simulations for
a variety of statistical systems show tl#at- 0, i.e. the magnetization undergoes an initial
increase This is a very prominent phenomenon in the short-time critical dynamics.

Now we consider the casey; = 0. Using equation (2) for the second moment of the
magnetization at the critical temperature gives

MP @) ~ 2Py @, Y3 L), (7)

In the beginning of the time evolution the spatial correlation length is still small, even at the
critical point. Thus it can be deduced that? (r, L) ~ L=, whered is the dimension of the
system. Taking this into account, equation (7) yields a power-law behaviour

1
M@ (1) ~ 12 cr = (d — 2é> - (8)
V) Z
An analysis of the autocorrelation (forg = 0)
1
At = N< Z Si(1)S; (0)> 9
shows that it obeys a power law [8]
A(t) ~ 1% Cq = C—l - 0. (20)

z

In summary, simulations of the dynamic system starting from small or zero initial
magnetization, at or near the critical point, allow the quanttiies, andc, to be measured
and thus a determination of the critical exponeht®/v andz separately. In principle, the
critical temperature itself can also be determined from the location of the optimal power-law
behaviour of the magnetization within the critical region [2,9]. However, a similar but more
accurate determination of the critical temperature will be presented below. This is also the
case for the determination of the exponeritom the derivative of\f with respect tar.

In the above considerations the dynamic relaxation process was assumed to start from a
disordered state with vanishing or small magnetizatign Another interesting and important
process is the dynamic relaxation from a completely ordered state. The initial magnetization
being exactly at its fixed pointg = 1, a scaling form

MP ¢, t, L) =b MO B3, bV, b71L) (12)

is expected. This scaling form looks the same as the dynamic scaling form in the long-time
regime, however, it is now assumed already valid in the macroscopic short-time regime.
For the magnetization itsels, = r*/? yields

M, 7) =t P M@, Y. (12)
This leads to the power-law behaviour

M(t) ~t 1= £ (13)
vz
at the critical point £ = 0). For small but nonzere, the power-law behaviour of the
magnetization will be modified by the scaling functia#i(1, r/**7), thus allowing for a
determination of the critical temperature [2]. Taking the derivative with respect da
both sides of equation (12) and fixirig = /% again, gives the logarithmic derivative of
the magnetization

A IN M, T)|peg ~ 10 cop= —. (14)
vz
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Here, unlike the relaxation from a disordered state, the average magnetization is not zero.
A Binder cumulantU (¢) can be obtained using the magnetization and its second moment.
Finite-size scaling shows that

®

M= _ 1~ cy = ﬁ (15)
(M)? z

Thus, the short-time behaviour of the dynamic relaxation starting from a completely
ordered state is also sufficient to determine all the critical exporfentandz as well as the
critical temperature. In practical simulations, these measurements of the critical exponents and
critical temperature are usually better in quality than those from a relaxation process starting
from a disordered state.

U@ =

3. Numerical results

We have performed simulations on three-dimensional lattices of linearsize32, 64 and 128
(inaparticular casé = 256), starting either from an ordered state or from a high-temperature
state with zero or small initial magnetization. In the latter cases the inital magnetization has
been prepared by flipping in an ordered state a definite number of spins at randomly chosen
sites in order to get the desired small valuewgf Starting from the initial state, the system has
been updated by a heat bath Monte Carlo algorithm. A unit in time is defined as a complete
update of all the spins in the lattice. Simulations have been performed, depending on the inital
magnetization, up to = 1000. The preparation of the inital magnetization and the update
up to the maximal time has been repeated 1000 or 5000 times, depending on the lattice size
(much less foil. = 256), and the magnetization, the second moment of the magnetization (3)
or the autocorrelation (9) has been measured. In general, several runs of this kind have been
performed to estimate the statistical error. The simulations used the Kalge€0.221 66 for

the critical point, taken from [10]. Simulations have also been carried outin the neighbourhood
of K. to extract the critical point and the critical exponent

3.1. Evolution from a disordered state

Magnetization. At the beginning of the time evolution, for sufficiently smait/*mo, the
magnetization undergoes a power-law initial increase #kpands not too small, the power-

law behaviour will be modified. This may be called the ‘finiig effect’. The possibility of a
finite-size effect also has to be evaluated. Furthermore, scaling form (2) is strictly valid only
in the limit mo = 0. However, practical measurements can only be carried out for finite
and the measured exponéntay show a weak dependencemp. The data must thus be
extrapolated fomy = 0.

We have measured the magnetizatidi) for mg = 0.02, Q04 and 006 for the largest
lattice, L = 128. Formg = 0.02 we have performed four runs, in the other cases three runs
up tor = 300. Figure 1 shows on a log—log scale a pronounced power-law behaviour starting
at the onset of the time evolution. A finitey effect is observed at the larger times.

In order to determine more clearly the region where the power law is strictly fulfilled, we
divided the timescale into non-overlapping internvalg¢) = [¢, q¢], withg < 2, and measured
the exponené (¢) separately in each interval. Since the intervals contain more points at later
times where the fluctuations are larger, the errors in each interval are comparable. Already
from the second bin the slope shows a stable behaviourmfes 0.02 slope is quite stable
up tor = 100. Therefor® was calculated from a least-squares fit in the time interva (B].

Similarly, we chose the interval [%0] for mg = 0.04. Formg = 0.06 the restrictive
interval [2 15] was used. Table 1 presents the results. From these results, an extrapolation to
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Figure 1. Time evolution of the magnetizatial (¢) for three values of the initial magnetization
mq for L = 128.

Table 1. The exponent measured fol. = 128 for different values of the initial magnetization
mo. The valued (mo = 0) is the result of an extrapolation (see text).

mo O 0.02 0.04 0.06
9  0.108(2) 0.1059(20) 0.1035(4) 0.1014(5)

mo = 0yields® = 0.108(2). Careful analysis of the data fér= 64 shows that the finite-size
effectin L = 128 is already negligible.

Autocorrelation. Measurements of the autocorrelation function suffer from large fluctuations
in the region of large, since it decays by nearly three orders of magnitude betweerD
andt = 100. Figure 24) shows results for four runs fdr = 128 on a log—log scale. For the
lattice sizeL. = 64 three runs were performed.
As described above, we have divided the timescale into non-overlapping intanvls
and calculated, (r) in each interval. This is exemplified fdr = 128 in figure 2£). On this
plot ¢, (¢) is rather constant after the first few bins, while large fluctuations start-af70.
Thus, the intervat = [10, 70] is used for. = 128 and 64 in order to obtaify. The results
are given in table 2. With no apparent dependence on lattice size, the two results were simply
averaged to estimatg for L = oo (second column).

Second moment of the magnetizatiof.he second moment of the magnetization has been
simulated for. = 128 in three runs up to = 512, and forL. = 64 in three runs each up to
t = 100. Figure 3 shows/@ (r) for L = 128 on a log—log scale.
This curve as well as the slopes in bins show slightly larger fluctuations at highet
no departure from a power law. Therefore, the full intervals [2, 512] for L = 128 and
t =[2,100] for L = 64 were used to compute the valuesofeported in table 2. Fat = oo,
the estimate; = 0.970(11) provided is obtained by averaging the results foe= 64 and
L = 128, since no dependence on the lattice size can be seen.
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Figure 2. (a) AutocorrelationA(r) and @) the slopec,(¢) of the autocorrelation function for
L = 128, in the intervalg\1 5(¢) = [¢, 1.5¢].

Table 2. Exponentsc, of the autocorrelation function ang of the second moment of the
magnetization for different lattice sizes obtained from a disordered initial statesfer O (upper
part). Exponents; of the power-law decrease of the magnetization @ndor the cumulant, as
well as inverse temperatufé. and exponent,; for the logarithmic derivative of the magnetization
measured from an ordered initial state (lower part). &othe additional result; = 0.2534(4)
obtained from two runs witl. = 256 has been included (see text).

L= L =128 L =64

ce 1.362(19)  1.358(19)  1.366(20)
c2 0.970(11)  0.966(16)  0.975(3)
c1 0.2533(5)  0.2539(1)  0.2527(8)
cv  1.462(12)  1.453(17)  1.471(4)
K. 022170(4) 0.22170(4) —

ca  0.774(1) 0.774(1) —

3.2. Evolution from an ordered state

For the determination of the critical exponents and critical temperature, the dynamic relaxation
process starting from an ordered state has been proven advantageous over that from a high-
temperature initial state. Indeed, the magnetization only decreases slowly in timedron.
Furthermore, the magnitude of the magnetization in the short-time regime is large, therefore
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Figure 3. Time evolution of the second moment of the magnetizatdéf?) (1), for L = 128.
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Figure 4. Time evolution of the magnetizatial (r) for mo = 1 for L = 256, 128, 64 and 32.
The points are obtained from the best fit to (16).

statistical fluctuations are less prominent. We have measured the magnetiZaticemd the
second momen¥ @ (¢) for lattice sizes 32, 64 and 128, and, with less statisticsl.fer 256.
Measurements have been performed up 9512 for L = 128, and up ta = 1000 for the
magnetization only. For the large lattice size= 256 an average over only 20 samples has
been performed whereas fbr= 128 and 64, over 1000 samples were taken for each run, and
two to four runs performed in order to estimate the statistical errorLFer32, 5000 samples
were collected.

Magnetization. Figure 4 shows the evolution of the magnetization for all four lattice sizes
on a log-log scale. It is interesting that for= 256 down toL. = 64 the measurements
completely overlap up to = 1000. From equation (13), the slope of the curves provides

a measure oB/vz. However, careful analysis reveals that the slope decreases weakly with
increasing time. This suggests that a correction to scaling should be considered in order to
obtain accurate results. In comparison to the two-dimensional Ising model, the correction to
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Figure 5. Time evolution of the Binder cumulaiit(z) for mp = 1 and lattice sizes = 128, 64
and 32.

scaling seems somewhat larger in three dimensions [2]. We have found that the best correction
to scaling is given by thansatz

M) = at~ e, (16)

Least-squares fits were performed in the interval[1, 1000] for L = 64, 128 and 256. The
resulting fit parameters, averaged over the three lattice sizes and over the two runs for each
lattice size, are Im) = 0.003310), ¢c; = 0.25337), y = 0.187419), ands = 0.47939).

Table 2 reports the values for. Calculated values fa¥ (¢) using (16) are also provided on
figure 4 (points) and show good agreement. Without the correction to scaling, the measured
exponent; would be 1-2% smaller.

Binder cumulant. The second moment of the magnetization has been measured #Bb2
for L = 128, and up ta = 1000 forL = 64 and 32. A plot of the Binder cumulabt(z),
defined in equation (15), is shown on log—log scale in figure 5. The curves show that for
L = 32 the power-law behaviour prevails only uprte- 100, while for the larger lattices it
remains up to the maximal time.

An analysis of the slope measured in the interv&s () shows that the exponeay (1)
can be obtained in the intervak= 30 up to the maximal time fak = 64 and 128. Fof, = 32
thereis a plateau only over= [10, 100]. Hence the results for this lattice size are not reported.
The slopecy is calculated in the intervals= [30, 1000] for L = 64 and: = [30, 512] for
L = 128 and given in table 2. Within errors they are consistent and their average is reported
for L = oo in table 2. The error estimates are only based on statistics over a limited number
of runs and exclude possible systematic contributions.

Critical temperature and,;. Figure 6 shows the magnetizatiof(r) for mg = 1 for three
values for the inverse temperatukg = 0.22066,K = 0.22166 andkK, = 0.22266,

on a log-log scale. The critical poit, can be estimated by searching for the best
power-law behaviour withk betweenk; and K,. Namely, the best straight-line fit to
curves obtained by quadratic interpolation fkf < K < K, is sought. Restricting

the interval tor = [30,512], the resultk, = 0.2217Q4) is obtained. The quadratic
interpolation also provides the logarithmic derivative of the magnetization with respect to
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Figure 6. Time evolution of the magnetizatiai (r) for mo = 1 for three values of the inverse
temperaturek; = 0.22066,K = 0.221 66 andk, = 0.222 66.
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Figure 7. Logarithmic derivative of the magnetization with respect tobtained from a quadratic
interpolation between the three curves shown in figure 6 také&nh-at0.221 66.

7 in equation (14). This is shown in figure 7. The slope over the interval 330]
providesc,; = 0.774(1). The errors are based on the statistics of comparing only two data
sets. A correction to scaling has not been considered. This could result in slightly larger
errors.

3.3. Critical exponents

We now proceed to determine the critical exponents. Using the relaxation from a high-
temperature state, we have measured the exp@ngintctly from the critical initial increase

in magnetization (6), and the exponestsindc, from the power-law behaviour of the second
moment (8) and the autocorrelation (10). Similarly, from measurements of the power-law
behaviour with arorderedinitial state we have obtained, c¢,1 andcy from the magnetization
(13), its logarithmic derivative (14) and the Binder cumulant (15). At this point, it is useful to
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Table 3. Determination ot from three independent measurements of.

d/z z
ca+0  1.470(13)  2.041(18)
v 1.462(12)  2.052(17)

co+2c1  1.4766(8)  2.032(11)

Table 4. Final results for all critical exponents and the critical pdifit(left). Results from earlier
investigations discussed in the text have been collected in the right column.

0 = 0.108(2) 0.104(3) [6]

2 = 2.0426) 2.04(3) [12], 2.032(4) [6]
2.04(1) [7], 2.05(2) [3]
2.04(2) [4]

B/v=05172)  0.518(7)[10], 0.5185(16) [16]

v =0632720)  0.6289(8) [10], 0.6250(25) [11]
0.6301(8) [16]

g =0.327317)  0.3258(44) [10], 0.3267(10) [16]
0.3269(6) [17]

K. =02217Q4) 0.2216595(26) [10]
0.2216546(10) [16]
0.2216544(3) [17]

recall the scaling relations:

_d B _B
Cp=——2— 1= —
Z vz 124
d d
ca=——0 cy = —
Z Z
1
Ca= —.
vz

Our measurements of the exponenére very accurate, while actual errorskipandc,;
could be somewhat larger than those given in table 2. The value obtaineddgrees well
with previous measurements [3, 4], although the approaches to correct for scaling differ. Our
procedure is essentially similar to that used in [11]. The dynamic expervamt be estimated
independently frona;,. Since the Binder cumulant (15) is constructed from the magnetization
and its second moment, the estimates are usually better than for a Binder cumulant constructed
from the second and the fourth moments, typically used in the relaxation from a disordered
state or in equilibrium. The exponentan also be extracted from + 6 andc, + 2¢;. Table 3
lists the results. These concur within statistical errors. Table 4 reports the average of the three
values. Withz, and frome; andc,1, the exponentg/v andv can be estimated. Results for all
critical exponents and the critical poikt. are given in table 4.

Our final result for the exponert given in table 1,0 = 0.108(2) is consistent with
an early estimate using a small lattice [5] but slightly larger thag- 0.104(3) obtained
from damage spreading [6]. It is not clear whether this difference comes from statistical
or systematic errors. From equilibrium dynamics, the dynamic expanent2.04(3) has
been extracted [12]. Values af = 2.032(4) [6] andz = 2.04(1) [7] have been obtained
recently from damage spreading and;ef 2.05(2) [3] andz = 2.04(2) [4] from large-scale
simulations of critical relaxation, starting from an ordered state. Our valae 2.042(6)
is consistent with all of them. For the ratgyv andv, recent analytic calculations on the
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base of a renormalization-group expansion (in equilibrium) ygelg: 0.327,8/v = 0.518

andv = 0.631 [13-15], while numerical investigations in equilibrium by Ferrenberg and
Landau [10] yields = 0.325844), /v = 0.5187) andv = 0.62898). [10] provides

a good review of earlier numerical values. Investigations using the cluster algorithm have
yieldedv = 0.63018) and 8 = 0.326710) [16] and 8 = 0.32696) [17]. In [11], the
valuev = 0.625(0(25) has been extracted from measuring the interface energy. Our value of
B/v = 0.517(2) is accurate but the value ofs slightly larger. Our estimate & is consistent

with K, = 0.221 659%26) in [10], K. = 0.221 654610) [16], or K. = 0.221 65443) [17].
Similar results have been quoted in [18—20].

4. Summary and discussion

Inthe previous sections we have reported comprehensive Monte Carlo simulations of the short-
time critical dynamics for the three-dimensional Ising model. Starting from a high-temperature
initial state, the magnetization, its second moment and the autocorrelation have been measured
atthe critical point. Similarly, we have studied the behaviour of the magnetization, its derivative
with respect to the temperature and the Binder cumulant for a completely ordered initial state.
Theoretically one expects a power law for all these observables within the short-time regime
at the critical point. This is indeed observed in our numerical simulations. All the dynamic
exponents and static exponents as well as the critical temperature have been determined. The
results are consistent and strongly support a full dynamic scaling in the short-time regime of the
dynamic evolution. The values of the dynamic exporesmd the static exponengs'v andv

are independent of initial conditions and agree well with those measured in equilibrium. Unlike
non-local cluster algorithms, the short-time dynamic approach studies the dynamic properties
of the original local dynamics. Our measurements of the static exponents are comparable with
large-scale simulations in equilibrium. All this indicates that the dynamic measurements of
the critical exponents are promising. This work could possibly be extended to the diluted or
the random field Ising models.

Note added in proofRecently, the results = 0.62985) [21] andB/v = 0.518(1) [22] have been reported.
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